Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae.
نویسندگان
چکیده
SSU72 is an essential gene encoding a phylogenetically conserved protein of unknown function that interacts with the general transcription factor TFIIB. A recessive ssu72-1 allele was identified as a synthetic enhancer of a TFIIB (sua7-1) defect, resulting in a heat-sensitive (Ts(-)) phenotype and a dramatic downstream shift in transcription start site selection. Here we describe a new allele, ssu72-2, that confers a Ts(-) phenotype in a SUA7 wild-type background. In an effort to further define Ssu72, we isolated suppressors of the ssu72-2 mutation. One suppressor is allelic to RPB2, the gene encoding the second-largest subunit of RNA polymerase II (RNAP II). Sequence analysis of the rpb2-100 suppressor defined a cysteine replacement of the phylogenetically invariant arginine residue at position 512 (R512C), located within homology block D of Rpb2. The ssu72-2 and rpb2-100 mutations adversely affected noninduced gene expression, with no apparent effects on activated transcription in vivo. Although isolated as a suppressor of the ssu72-2 Ts(-) defect, rpb2-100 enhanced the transcriptional defects associated with ssu72-2. The Ssu72 protein interacts directly with purified RNAP II in a coimmunoprecipitation assay, suggesting that the genetic interactions between ssu72-2 and rpb2-100 are a consequence of physical interactions. These results define Ssu72 as a highly conserved factor that physically and functionally interacts with the RNAP II core machinery during transcription initiation.
منابع مشابه
Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae
Recessive mutations in the SSU71, SSU72 and SSU73 genes of Saccharomyces cerevisiae were identified as either suppressors or enhancers of a TFIIB defect (sua7-1) that confers both a cold-sensitive growth phenotype and a downstream shift in transcription start site selection. The SSU71 (TFG1) gene encodes the largest subunit of TFIIF and SSU72 encodes a novel protein that is essential for cell v...
متن کاملCloning and sequence determination of the Schizosaccharomyces pombe rpb2 gene encoding the subunit 2 of RNA polymerase II.
The gene, rpb2, encoding the second largest subunit, subunit 2, of RNA polymerase II has been cloned from Schizosaccharomyces pombe using the corresponding gene, RPB2, of Saccharomyces cerevisiae as a probe for cross-hybridization. We have determined the complete nucleotide sequence of rpb2, and parts of the PCR-amplified rpb2 cDNA. The predicted coding sequence of a polypeptide of 1210 amino a...
متن کاملSite-directed mutagenesis, purification and assay of Saccharomyces cerevisiae RNA polymerase II.
In order to analyze the structure-function of multi-subunit RNA polymerases (RNAPs), it is necessary to make site-directed mutations in key residues. Because Saccharomyces cerevisiae RNAP II is isolated as a 12 subunit enzyme that has not been amenable to in vitro reconstitution, making site-directed mutations in a particular subunit presents technical issues. In this work, we demonstrate a met...
متن کاملSsu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription.
Termination of transcription by RNA polymerase II (Pol II) is a poorly understood yet essential step in eukaryotic gene expression. Termination of pre-mRNA synthesis is coupled to recognition of RNA signals that direct cleavage and polyadenylation of the nascent transcript. Termination of nonpolyadenylated transcripts made by Pol II in the yeast Saccharomyces cerevisiae, including the small nuc...
متن کاملFunctional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: implications for the mechanism of transcription initiation.
The general transcription factor TFIIB is required for accurate initiation, although the mechanism by which RNA polymerase II (RNAP II) identifies initiation sites is not well understood. Here we describe results from genetic and biochemical analyses of an altered form of yeast TFIIB containing an arginine-78 --> cysteine (R78C) replacement in the "B-finger" domain. TFIIB R78C shifts start site...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 20 22 شماره
صفحات -
تاریخ انتشار 2000